567 research outputs found

    Suppressed Coherence due to Orbital Correlations in the Ferromagnetically Ordered Metallic Phase of Mn Compounds

    Full text link
    Small Drude weight DD together with small specific heat coefficient γ\gamma observed in the ferromagnetic phase of R1x_{1-x}Ax_xMnO3_3 (R=La, Pr, Nd, Sm; A=Ca, Sr, Ba) are analyzed in terms of a proximity effect of the Mott insulator. The scaling theory for the metal-insulator transition with the critical enhancement of orbital correlations toward the staggered ordering of two ege_g orbitals such as 3x2r23x^2-r^2 and 3y2r23y^2-r^2 symmetries may lead to the critical exponents of DδuD \propto \delta^{u} and γδv\gamma \propto \delta^v with u=3/2u=3/2 and v=0v=0. The result agrees with the experimental indications.Comment: 4 pages LaTeX using jpsj.sty. To appear in J. Phys. Soc. Jpn. 67(1998)No.

    Ultrafast Photoinduced Formation of Metallic State in a Perovskite-type Manganite with Short Range Charge and Orbital Order

    Full text link
    Femtosecond reflection spectroscopy was performed on a perovskite-type manganite, Gd0.55Sr0.45MnO3, with the short-range charge and orbital order (CO/OO). Immediately after the photoirradiation, a large increase of the reflectivity was detected in the mid-infrared region. The optical conductivity spectrum under photoirradiation obtained from the Kramers-Kronig analyses of the reflectivity changes demonstrates a formation of a metallic state. This suggests that ferromagnetic spin arrangements occur within the time resolution (ca. 200 fs) through the double exchange interaction, resulting in an ultrafast CO/OO to FM switching.Comment: 4 figure

    One-Center Charge Transfer Transitions in Manganites

    Full text link
    In frames of a rather conventional cluster approach, which combines the crystal field and the ligand field models we have considered different charge transfer (CT) states and O 2p-Mn 3d CT transitions in MnO69_{6}^{9-} octahedra. The many-electron dipole transition matrix elements were calculated using the Racah algebra for the cubic point group. Simple "local" approximation allowed to calculate the relative intensity for all dipole-allowed ππ\pi -\pi and σσ\sigma -\sigma CT transitions. We present a self-consistent description of the CT bands in insulating stoichiometric LaMn3+^{3+}O3_3 compound with the only Mn3+^{3+} valent state and idealized octahedral MnO69_{6}^{9-} centers which allows to substantially correct the current interpretation of the optical spectra. Our analysis shows the multi-band structure of the CT optical response with the weak low-energy edge at 1.7 eV, associated with forbidden t1g(π)egt_{1g}(\pi)-e_{g} transition and a series of the weak and strong dipole-allowed high-energy transitions starting from 2.5 and 4.5 eV, respectively, and extending up to nearly 11 eV. The most intensive features are associated with two strong composite bands near 4.6÷4.74.6\div 4.7 eV and 8÷98\div 9 eV, respectively, resulting from the superposition of the dipole-allowed σσ\sigma -\sigma and ππ\pi -\pi CT transitions. These predictions are in good agreement with experimental spectra. The experimental data point to a strong overscreening of the crystal field parameter DqDq in the CT states of MnO69_{6}^{9-} centers.Comment: 10 pages, 3 figure

    Optical conductivity in doped manganites with planar x2^2-y2^2 orbital order

    Full text link
    We investigate a planar model for the ferromagnetic (FM) phase of manganites, which develops orbital order of ege_g electrons with x2^2-y2^2-symmetry at low temperature. The dynamic structure factor of orbital excitations and the optical conductivity σ(ω)\sigma(\omega) are studied with help of a finite-temperature diagonalization method. Our calculations provide a theoretical prediction for σ(ω)\sigma(\omega) for the 2D FM state and are of possible relevance for the recently found A-type phase of manganites at high doping which consists of FM layers coupled antiferromagnetically. In the x2^2-y2^2 ordered regime σ(ω)\sigma(\omega) shows both a Drude peak and a gapped incoherent absorption due to a gap in the orbital excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. Let

    Dynamic Kerr Effect and Spectral Weight Transfer in the Manganites

    Full text link
    We perform pump-probe Kerr spectroscopy in the colossally magnetoresistive manganite Pr0.67Ca0.33MnO3. Kerr effects uncover surface magnetic dynamics undetected by established methods based on reflectivity and optical spectral weight transfer. Our findings indicate the connection between spin and charge dynamics in the manganites may be weaker than previously thought. Additionally, important differences between this system and conventional ferromagnetic metals manifest as long-lived, magneto-optical coupling transients, which may be generic to all manganites.Comment: 12 text pages, 4 figure

    Incoherent Charge Dynamics in Perovskite Manganese Oxides

    Full text link
    A minimal model is proposed for the perovskite manganese oxides showing the strongly incoherent charge dynamics with a suppressed Drude weight in the ferromagnetic and metallic phase near the insulator. We investigate a generalized double-exchange model including three elements; the orbital degeneracy of ege_g conduction bands, the Coulomb interaction and fluctuating Jahn-Teller distortions. We demonstrate that Lanczo¨\ddot{\rm o}s diagonalization calculations combined with Monte Carlo sampling of the largely fluctuating lattice distortions result in the optical conductivity which quantitatively accounts for the experimental indications. It is found that all the three elements are indispensable to understand the charge dynamics in these compounds.Comment: 4 pages with 1 page of figures. To appear in J. Phys. Soc. Jp

    Dominant role of charge ordering on high harmonic generation in Pr_{0.6}Ca_{0.4}MnO_{3}

    Full text link
    High-harmonic generation (HHG) is a typical high-order nonlinear optical phenomenon and can be used to probe electronic structures of solids. Here, we investigate the temperature dependence of HHG from Pr_{0.6}Ca_{0.4}MnO_{3} in the range of 7 K to 294 K including the charge ordering (CO) transition and magnetic transition temperatures. The high-harmonic intensity remains almost constant in the high-temperature charge-disordered phase. However, as the temperature is lowered, it starts to gradually increase near the CO transition temperature where an optical gap related to the CO phase appears. The anomalous gap energy dependence resembles the one recently reported in a Mott insulator. We attribute the HHG suppression at high temperatures to the destructive interference among high-harmonic emissions from thermally activated multiple CO configurations. Our results suggest that HHG is a promising tool for probing the fluctuation of local order in strongly correlated systems.Comment: 16 pages, 8 figure

    Review of the initial validation and characterization of a chicken 3K SNP array.

    Get PDF
    In 2004 the chicken genome sequence and more than 2.8 million single nucleotide polymorphisms (SNPs) were reported. This information greatly enhanced the ability of poultry scientists to understand chicken biology, especially with respect to identification of quantitative trait loci (QTL) and genes that control simple and complex traits. To validate and address the quality of the reported SNPs, assays for 3072 SNPS were developed and used to genotype 2576 DNAs isolated from commercial and experimental birds. Over 90% of the SNPs were valid based on the criterion used for segregating, and over 88% had a minor allele frequency of 2% or greater. As the East Lansing (EL) and Wageningen University (WAU) reference panels were genotyped, 1933 SNPs were added to the chicken genetic map, which was used in the second chicken genome sequence assembly. It was also discovered that linkage disequilibrium varied considerably between commercial layers and broilers; with the latter having haplotype blocks averaging 10 to 50 kb in size. Finally, it was estimated that commercial lines have lost 70% or more of their genetic diversity, with the majority of allele loss attributable to the limited number of chicken breeds used

    Charge and orbital order in half-doped manganites

    Full text link
    An explanation is given for the charge order, orbital order and insulating state observed in half-doped manganese oxides, such as Nd1/2_{1/2}Sr1/2_{1/2}MnO3_{3}. The competition between the kinetic energy of the electrons and the magnetic exchange energy drives the formation of effectively one-dimensional ferromagnetic zig-zag chains. Due to a topological phase factor in the hopping, the chains are intrinsically insulating and orbital-ordered. Most surprisingly, the strong Coulomb interaction between electrons on the same Mn-ion leads to the experimentally observed charge ordering. For doping less than 1/2 the system is unstable towards phase separation into a ferromagnetic metallic and charge-ordered insulating phase.Comment: To appear in Phys. Rev. Lett., 4 pages, 4 figure

    Effects of Orbital Degeneracy and Electron Correlation on Charge Dynamics in Perovskite Manganese Oxides

    Full text link
    Taking the orbital degeneracy of ege_g conduction bands and the Coulomb interaction into account in a double-exchange model, we investigate charge dynamics of perovskite Mn oxides by the Lanczo¨\ddot{\rm o}s diagonalization method. In the metallic phase near the Mott insulator, it is found that the optical conductivity for a spin-polarized two-dimensional system exhibits a weight transfer to a broad and incoherent structure within the lower-Hubbard band together with a suppressed Drude weight. It reproduces qualitative feature of the experimental results. As an orbital effect, we find that an anomalous charge correlation at quarter filling suppresses the coherent charge dynamics and signals precursor to the charge ordering.Comment: 4 pages LaTeX including 3 PS figures, to appear in J. Phys. Soc. Jp
    corecore